Fast structure-based assignment of 15N HSQC spectra of selectively 15N-labeled paramagnetic proteins.

نویسندگان

  • Guido Pintacuda
  • Max A Keniry
  • Thomas Huber
  • Ah Young Park
  • Nicholas E Dixon
  • Gottfried Otting
چکیده

A novel strategy for fast NMR resonance assignment of (15)N HSQC spectra of proteins is presented. It requires the structure coordinates of the protein, a paramagnetic center, and one or more residue-selectively (15)N-labeled samples. Comparison of sensitive undecoupled (15)N HSQC spectra recorded of paramagnetic and diamagnetic samples yields data for every cross-peak on pseudocontact shift, paramagnetic relaxation enhancement, cross-correlation between Curie-spin and dipole-dipole relaxation, and residual dipolar coupling. Comparison of these four different paramagnetic quantities with predictions from the three-dimensional structure simultaneously yields the resonance assignment and the anisotropy of the susceptibility tensor of the paramagnetic center. The method is demonstrated with the 30 kDa complex between the N-terminal domain of the epsilon subunit and the theta subunit of Escherichia coli DNA polymerase III. The program PLATYPUS was developed to perform the assignment, provide a measure of reliability of the assignment, and determine the susceptibility tensor anisotropy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glutarate and N-acetyl-L-glutamate buffers for cell-free synthesis of selectively 15N-labelled proteins.

Cell-free protein synthesis provides rapid and economical access to selectively 15N-labelled proteins, greatly facilitating the assignment of 15N-HSQC spectra. While the best yields are usually obtained with buffers containing high concentrations of potassium L-glutamate, preparation of selectively 15N-Glu labelled samples requires non-standard conditions. Among many compounds tested to replace...

متن کامل

Amino-acid type identification in 15N-HSQC spectra by combinatorial selective 15N-labelling.

The efficiency of cell-free protein synthesis combined with combinatorial selective 15N-labelling provides a method for the rapid assignment of 15N-HSQC cross-peaks to the 19 different non-proline amino-acid types from five 15N-HSQC spectra. This strategy was explored with two different constructs of the C-terminal domain V of the tau subunit of the Escherichia coli DNA polymerase III holoenzym...

متن کامل

Differential Dynamics of Extracellular and Cytoplasmic Domains in Denatured States of Rhodopsin

Rhodopsin is a model system for understanding membrane protein folding. Recently, conditions that allow maximally denaturing rhodopsin without causing aggregation have been determined, opening the door to the first structural characterization of denatured states of rhodopsin by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy. One-dimensional 1H NMR spectr...

متن کامل

Sequence-specific assignments of the backbone 1H, 13C, and 15N resonances of the MutT enzyme by heteronuclear multidimensional NMR.

The MutT protein, a 129-residue enzyme from Escherichia coli which prevents A.T-->C.G mutations, catalyzes the hydrolysis of nucleoside triphosphates (NTP) to nucleoside monophosphates (NMP) and pyrophosphate [Bhatnagar, S. K., Bullions, L. C., & Bessman, M. J. (1991) J. Biol. Chem. 266, 9050-9054], by a mechanism involving nucleophilic substitution at the rarely attacked beta-phosphorus of NTP...

متن کامل

Cell-free protein synthesis in an autoinduction system for NMR studies of protein-protein interactions.

Cell-free protein synthesis systems provide facile access to proteins in a nascent state that enables formation of soluble, native protein-protein complexes even if one of the protein components is prone to self-aggregation and precipitation. Combined with selective isotope-labeling, this allows the rapid analysis of protein-protein interactions with few 15N-HSQC spectra. The concept is demonst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 126 9  شماره 

صفحات  -

تاریخ انتشار 2004